Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
PLoS One ; 19(5): e0285635, 2024.
Article in English | MEDLINE | ID: mdl-38713673

ABSTRACT

IMPORTANCE: The prevalence, pathophysiology, and long-term outcomes of COVID-19 (post-acute sequelae of SARS-CoV-2 [PASC] or "Long COVID") in children and young adults remain unknown. Studies must address the urgent need to define PASC, its mechanisms, and potential treatment targets in children and young adults. OBSERVATIONS: We describe the protocol for the Pediatric Observational Cohort Study of the NIH's REsearching COVID to Enhance Recovery (RECOVER) Initiative. RECOVER-Pediatrics is an observational meta-cohort study of caregiver-child pairs (birth through 17 years) and young adults (18 through 25 years), recruited from more than 100 sites across the US. This report focuses on two of four cohorts that comprise RECOVER-Pediatrics: 1) a de novo RECOVER prospective cohort of children and young adults with and without previous or current infection; and 2) an extant cohort derived from the Adolescent Brain Cognitive Development (ABCD) study (n = 10,000). The de novo cohort incorporates three tiers of data collection: 1) remote baseline assessments (Tier 1, n = 6000); 2) longitudinal follow-up for up to 4 years (Tier 2, n = 6000); and 3) a subset of participants, primarily the most severely affected by PASC, who will undergo deep phenotyping to explore PASC pathophysiology (Tier 3, n = 600). Youth enrolled in the ABCD study participate in Tier 1. The pediatric protocol was developed as a collaborative partnership of investigators, patients, researchers, clinicians, community partners, and federal partners, intentionally promoting inclusivity and diversity. The protocol is adaptive to facilitate responses to emerging science. CONCLUSIONS AND RELEVANCE: RECOVER-Pediatrics seeks to characterize the clinical course, underlying mechanisms, and long-term effects of PASC from birth through 25 years old. RECOVER-Pediatrics is designed to elucidate the epidemiology, four-year clinical course, and sociodemographic correlates of pediatric PASC. The data and biosamples will allow examination of mechanistic hypotheses and biomarkers, thus providing insights into potential therapeutic interventions. CLINICAL TRIALS.GOV IDENTIFIER: Clinical Trial Registration: http://www.clinicaltrials.gov. Unique identifier: NCT05172011.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/virology , Adolescent , Child , Child, Preschool , Female , Young Adult , Adult , Male , Infant , SARS-CoV-2/isolation & purification , Infant, Newborn , Prospective Studies , Research Design , Cohort Studies , Post-Acute COVID-19 Syndrome
3.
Respir Res ; 25(1): 118, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459594

ABSTRACT

BACKGROUND: Vitamin D may help to alleviate asthma exacerbation because of its anti-inflammation effect, but the evidence is inconsistent in childhood asthma. MiRNAs are important mediators in asthma pathogenesis and also excellent non-invasive biomarkers. We hypothesized that circulating miRNAs are associated with asthma exacerbation and modified by vitamin D levels. METHODS: We sequenced baseline serum miRNAs from 461 participants in the Childhood Asthma Management Program (CAMP). Logistic regression was used to associate miRNA expression with asthma exacerbation through interaction analysis first and then stratified by vitamin D insufficient and sufficient groups. Microarray from lymphoblastoid B-cells (LCLs) treated by vitamin D or sham of 43 subjects in CAMP were used for validation in vitro. The function of miRNAs was associated with gene modules by weighted gene co-expression network analysis (WGCNA). RESULTS: We identified eleven miRNAs associated with asthma exacerbation with vitamin D effect modification. Of which, five were significant in vitamin D insufficient group and nine were significant in vitamin D sufficient group. Six miRNAs, including hsa-miR-143-3p, hsa-miR-192-5p, hsa-miR-151a-5p, hsa-miR-24-3p, hsa-miR-22-3p and hsa-miR-451a were significantly associated with gene modules of immune-related functions, implying miRNAs may mediate vitamin D effect on asthma exacerbation through immune pathways. In addition, hsa-miR-143-3p and hsa-miR-451a are potential predictors of childhood asthma exacerbation at different vitamin D levels. CONCLUSIONS: miRNAs are potential mediators of asthma exacerbation and their effects are directly impacted by vitamin D levels.


Subject(s)
Asthma , Circulating MicroRNA , MicroRNAs , Humans , MicroRNAs/metabolism , Circulating MicroRNA/genetics , Gene Expression Profiling , Asthma/diagnosis , Asthma/genetics , Vitamin D
4.
J Allergy Clin Immunol ; 153(3): 695-704, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38056635

ABSTRACT

BACKGROUND: Piwi-interacting RNAs (piRNAs), comprising the largest noncoding RNA group, regulate transcriptional processes. Whether piRNAs are associated with type 2 (T2)-high asthma is unknown. OBJECTIVE: We sought to investigate the association between piRNAs and T2-high asthma in childhood asthma. METHODS: We sequenced plasma samples from 462 subjects in the Childhood Asthma Management Program (CAMP) as the discovery cohort and 1165 subjects in the Genetics of Asthma in Costa Rica Study (GACRS) as a replication cohort. Sequencing reads were filtered first, and piRNA reads were annotated and normalized. Linear regression was used for the association analysis of piRNAs and peripheral blood eosinophil count, total serum IgE level, and long-term asthma exacerbation in children with asthma. Mediation analysis was performed to investigate the effect direction. We then ascertained if the circulating piRNAs were present in asthmatic airway epithelial cells in a Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) public data set. RESULTS: Fifteen piRNAs were significantly associated with eosinophil count in CAMP (P ≤ .05), and 3 were successfully replicated in GACRS. Eleven piRNAs were associated with total IgE in CAMP, and one of these was replicated in GACRS. All 22 significant piRNAs were identified in epithelial cells in vitro, and 6 of these were differentially expressed between subjects with asthma and healthy controls. Fourteen piRNAs were associated with long-term asthma exacerbation, and effect of piRNAs on long-term asthma exacerbation are mediated through eosinophil count and serum IgE level. CONCLUSION: piRNAs are associated with peripheral blood eosinophils and total serum IgE in childhood asthma and may play important roles in T2-high asthma.


Subject(s)
Asthma , Piwi-Interacting RNA , Child , Humans , RNA, Small Interfering/genetics , Asthma/genetics , Immunoglobulin E/genetics , Phenotype
5.
Res Sq ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37461659

ABSTRACT

Rationale: Bronchodilator response (BDR) is a measure of improvement in airway smooth muscle tone, inhibition of liquid accumulation and mucus section into the lumen in response to short-acting beta-2 agonists that varies among asthmatic patients. MicroRNAs (miRNAs) are well-known post-translational regulators. Identifying miRNAs associated with BDR could lead to a better understanding of the underlying complex pathophysiology. Objective: The purpose of this study is to identify circulating miRNAs associated with bronchodilator response in asthma and decipher possible mechanism of bronchodilator response variation. Methods: We used available small RNA sequencing on blood serum from 1,134 asthmatic children aged 6 to 14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS). We filtered the participants into high and low bronchodilator response (BDR) quartiles and used DeSeq2 to identify miRNAs with differential expression (DE) in high (N= 277) vs low (N= 278) BDR group. Replication was carried out in the Leukotriene modifier Or Corticosteroids or Corticosteroid-Salmeterol trial (LOCCS), an adult asthma cohort. The putative target genes of DE miRNAs were identified, and pathway enrichment analysis was performed. Results: We identified 10 down-regulated miRNAs having odds ratios (OR) between 0.37 and 0.76 for a doubling of miRNA counts and one up-regulated miRNA (OR=2.26) between high and low BDR group. These were assessed for replication in the LOCCS cohort, where two miRNAs (miR-200b-3p and miR-1246) were associated. Further, functional annotation of 11 DE miRNAs were performed as well as of two replicated miRs. Target genes of these miRs were enriched in regulation of cholesterol biosynthesis by SREBPs, ESR-mediated signaling, G1/S transition, RHO GTPase cycle, and signaling by TGFB family pathways. Conclusion: MiRNAs miR-1246 and miR-200b-3p are associated with both childhood and adult asthma BDR. Our findings add to the growing body of evidence that miRNAs play a significant role in the difference of asthma treatment response among patients as it points to genomic regulatory machinery underlying difference in bronchodilator response among patients. Trial registration: LOCCS cohort [ClinicalTrials.gov number: NCT00156819], GACRS cohort [ClinicalTrials.gov number: NCT00021840].

6.
Obes Sci Pract ; 9(3): 210-217, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37287517

ABSTRACT

Objectives: Obesity is a risk factor for obstructive sleep apnea (OSA) in children. Childhood obesity rates vary amongst different ethnic groups. Here the interaction of Hispanic ethnicity and obesity on OSA risk was evaluated. Methods: Retrospective cross-sectional analysis of consecutive children undergoing polysomnography and anthropometry using bioelectrical impedance from 2017 to 2020. Demographics obtained from the medical chart. Children who had also undergone cardiometabolic testing were identified and the relationship of cardiometabolic markers with OSA and anthropometry was assessed. Results: Data from 1217 children revealed Hispanic children were more likely to have moderate-severe OSA (36.0%) compared to Non-Hispanic children (26.5%), p < 0.001. Hispanic children had greater Body mass index (BMI), BMI percentile and percent body fat, p < 0.0001. In children that underwent cardiometabolic testing, Hispanic children had significantly greater serum alanine aminotransferase levels (ALT) levels. Following adjustment of age and sex, Hispanic ethnicity was not found to moderate the association of anthropometry with OSA, anthropometry with cardiometabolic markers, and OSA with cardiometabolic markers. Conclusions: OSA was more likely in Hispanic children; this relationship was likely driven by obesity status rather than ethnicity. Among children undergoing cardiometabolic testing, Hispanic children were observed to have greater ALT concentrations however ethnicity did not impact the association of anthropometry and ALT or other cardiometabolic markers.

7.
Sci Transl Med ; 15(699): eadf3843, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37285400

ABSTRACT

The association between neutrophil extracellular traps (NETs) and response to inhaled corticosteroids (ICS) in asthma is unclear. To better understand this relationship, we analyzed the blood transcriptomes from children with controlled and uncontrolled asthma in the Taiwanese Consortium of Childhood Asthma Study using weighted gene coexpression network analysis and pathway enrichment methods. We identified 298 uncontrolled asthma-specific differentially expressed genes and one gene module associated with neutrophil-mediated immunity, highlighting a potential role for neutrophils in uncontrolled asthma. We also found that NET abundance was associated with nonresponse to ICS in patients. In a neutrophilic airway inflammation murine model, steroid treatment could not suppress neutrophilic inflammation and airway hyperreactivity. However, NET disruption with deoxyribonuclease I (DNase I) efficiently inhibited airway hyperreactivity and inflammation. Using neutrophil-specific transcriptomic profiles, we found that CCL4L2 was associated with ICS nonresponse in asthma, which was validated in human and murine lung tissue. CCL4L2 expression was also negatively correlated with pulmonary function change after ICS treatment. In summary, steroids fail to suppress neutrophilic airway inflammation, highlighting the potential need to use alternative therapies such as leukotriene receptor antagonists or DNase I that target the neutrophil-associated phenotype. Furthermore, these results highlight CCL4L2 as a potential therapeutic target for individuals with asthma refractory to ICS.


Subject(s)
Asthma , Extracellular Traps , Animals , Child , Humans , Mice , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Deoxyribonuclease I/metabolism , Deoxyribonuclease I/therapeutic use , Extracellular Traps/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Chemokine CCL4/metabolism
8.
Cells ; 12(11)2023 05 29.
Article in English | MEDLINE | ID: mdl-37296627

ABSTRACT

BACKGROUND: Asthmatic patients' responses to inhaled corticosteroids (ICS) are variable and difficult to quantify. We have previously defined a Cross-sectional Asthma STEroid Response (CASTER) measure of ICS response. MicroRNAs (miRNAs) have shown strong effects on asthma and inflammatory processes. OBJECTIVE: The purpose of this study was to identify key associations between circulating miRNAs and ICS response in childhood asthma. METHODS: Small RNA sequencing in peripheral blood serum from 580 children with asthma on ICS treatment from The Genetics of Asthma in Costa Rica Study (GACRS) was used to identify miRNAs associated with ICS response using generalized linear models. Replication was conducted in children on ICS from the Childhood Asthma Management Program (CAMP) cohort. The association between replicated miRNAs and the transcriptome of lymphoblastoid cell lines in response to a glucocorticoid was assessed. RESULTS: The association study on the GACRS cohort identified 36 miRNAs associated with ICS response at 10% false discovery rate (FDR), three of which (miR-28-5p, miR-339-3p, and miR-432-5p) were in the same direction of effect and significant in the CAMP replication cohort. In addition, in vitro steroid response lymphoblastoid gene expression analysis revealed 22 dexamethasone responsive genes were significantly associated with three replicated miRNAs. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) revealed a significant association between miR-339-3p and two modules (black and magenta) of genes associated with immune response and inflammation pathways. CONCLUSION: This study highlighted significant association between circulating miRNAs miR-28-5p, miR-339-3p, and miR-432-5p and ICS response. miR-339-3p may be involved in immune dysregulation, which leads to a poor response to ICS treatment.


Subject(s)
Asthma , Circulating MicroRNA , MicroRNAs , Child , Humans , MicroRNAs/metabolism , Cross-Sectional Studies , Asthma/drug therapy , Asthma/genetics , Adrenal Cortex Hormones/therapeutic use , Genomics
9.
Int J Mol Sci ; 24(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175432

ABSTRACT

Intrauterine smoke (IUS) exposure during early childhood has been associated with a number of negative health consequences, including reduced lung function and asthma susceptibility. The biological mechanisms underlying these associations have not been established. MicroRNAs regulate the expression of numerous genes involved in lung development. Thus, investigation of the impact of IUS on miRNA expression during human lung development may elucidate the impact of IUS on post-natal respiratory outcomes. We sought to investigate the effect of IUS exposure on miRNA expression during early lung development. We hypothesized that miRNA-mRNA networks are dysregulated by IUS during human lung development and that these miRNAs may be associated with future risk of asthma and allergy. Human fetal lung samples from a prenatal tissue retrieval program were tested for differential miRNA expression with IUS exposure (measured using placental cotinine concentration). RNA was extracted and miRNA-sequencing was performed. We performed differential expression using IUS exposure, with covariate adjustment. We also considered the above model with an additional sex-by-IUS interaction term, allowing IUS effects to differ by male and female samples. Using paired gene expression profiles, we created sex-stratified miRNA-mRNA correlation networks predictive of IUS using DIABLO. We additionally evaluated whether miRNAs were associated with asthma and allergy outcomes in a cohort of childhood asthma. We profiled pseudoglandular lung miRNA in n = 298 samples, 139 (47%) of which had evidence of IUS exposure. Of 515 miRNAs, 25 were significantly associated with intrauterine smoke exposure (q-value < 0.10). The IUS associated miRNAs were correlated with well-known asthma genes (e.g., ORM1-Like Protein 3, ORDML3) and enriched in disease-relevant pathways (oxidative stress). Eleven IUS-miRNAs were also correlated with clinical measures (e.g., Immunoglobulin E andlungfunction) in children with asthma, further supporting their likely disease relevance. Lastly, we found substantial differences in IUS effects by sex, finding 95 significant IUS-miRNAs in male samples, but only four miRNAs in female samples. The miRNA-mRNA correlation networks were predictive of IUS (AUC = 0.78 in males and 0.86 in females) and suggested that IUS-miRNAs are involved in regulation of disease-relevant genes (e.g., A disintegrin and metalloproteinase domain 19 (ADAM19), LBH regulator of WNT signaling (LBH)) and sex hormone signaling (Coactivator associated methyltransferase 1(CARM1)). Our study demonstrated differential expression of miRNAs by IUS during early prenatal human lung development, which may be modified by sex. Based on their gene targets and correlation to clinical asthma and atopy outcomes, these IUS-miRNAs may be relevant for subsequent allergy and asthma risk. Our study provides insight into the impact of IUS in human fetal lung transcriptional networks and on the developmental origins of asthma and allergic disorders.


Subject(s)
Asthma , MicroRNAs , Child , Humans , Male , Female , Child, Preschool , Pregnancy , Smoke , Placenta/metabolism , Asthma/genetics , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics
10.
Expert Rev Clin Immunol ; : 1-14, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37190963

ABSTRACT

INTRODUCTION: Asthma is a heterogeneous, multifactorial disease with multiple genetic and environmental risk factors playing a role in pathogenesis and therapeutic response. Understanding of pharmacogenetics can help with matching individualized treatments to specific genotypes of asthma to improve therapeutic outcomes especially in uncontrolled or severe asthma. AREAS COVERED: In this review, we outline novel information about biology, pathways, and mechanisms related to interindividual variability in drug response (corticosteroids, bronchodilators, leukotriene modifiers, and biologics) for childhood asthma. We discuss candidate gene, genome-wide association studies and newer omics studies including epigenomics, transcriptomics, proteomics, and metabolomics as well as integrative genomics and systems biology methods related to childhood asthma. The articles were obtained after a series of searches, last updated November 2022, using database PubMed/CINAHL DB. EXPERT OPINION: Implementation of pharmacogenetic algorithms can improve therapeutic targeting in children with asthma, particularly with severe or uncontrolled asthma who typically have challenges in clinical management and carry considerable financial burden. Future studies focusing on potential biomarkers both clinical and pharmacogenetic can help formulate a prognostic test for asthma treatment response that would represent true bench to bedside clinical implementation.

11.
medRxiv ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37214806

ABSTRACT

Importance: The prevalence, pathophysiology, and long-term outcomes of COVID-19 (post-acute sequelae of SARS-CoV-2 [PASC] or "Long COVID") in children and young adults remain unknown. Studies must address the urgent need to define PASC, its mechanisms, and potential treatment targets in children and young adults. Observations: We describe the protocol for the Pediatric Observational Cohort Study of the NIH's RE searching COV ID to E nhance R ecovery (RECOVER) Initiative. RECOVER-Pediatrics is an observational meta-cohort study of caregiver-child pairs (birth through 17 years) and young adults (18 through 25 years), recruited from more than 100 sites across the US. This report focuses on two of five cohorts that comprise RECOVER-Pediatrics: 1) a de novo RECOVER prospective cohort of children and young adults with and without previous or current infection; and 2) an extant cohort derived from the Adolescent Brain Cognitive Development (ABCD) study ( n =10,000). The de novo cohort incorporates three tiers of data collection: 1) remote baseline assessments (Tier 1, n=6000); 2) longitudinal follow-up for up to 4 years (Tier 2, n=6000); and 3) a subset of participants, primarily the most severely affected by PASC, who will undergo deep phenotyping to explore PASC pathophysiology (Tier 3, n=600). Youth enrolled in the ABCD study participate in Tier 1. The pediatric protocol was developed as a collaborative partnership of investigators, patients, researchers, clinicians, community partners, and federal partners, intentionally promoting inclusivity and diversity. The protocol is adaptive to facilitate responses to emerging science. Conclusions and Relevance: RECOVER-Pediatrics seeks to characterize the clinical course, underlying mechanisms, and long-term effects of PASC from birth through 25 years old. RECOVER-Pediatrics is designed to elucidate the epidemiology, four-year clinical course, and sociodemographic correlates of pediatric PASC. The data and biosamples will allow examination of mechanistic hypotheses and biomarkers, thus providing insights into potential therapeutic interventions. Clinical Trialsgov Identifier: Clinical Trial Registration: http://www.clinicaltrials.gov . Unique identifier: NCT05172011.

12.
Nat Commun ; 14(1): 47, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599824

ABSTRACT

Obesity increases asthma prevalence and severity. However, the underlying mechanisms are poorly understood, and consequently, therapeutic options for asthma patients with obesity remain limited. Here we report that cholecystokinin-a metabolic hormone best known for its role in signaling satiation and fat metabolism-is increased in the lungs of obese mice and that pharmacological blockade of cholecystokinin A receptor signaling reduces obesity-associated airway hyperresponsiveness. Activation of cholecystokinin A receptor by the hormone induces contraction of airway smooth muscle cells. In vivo, cholecystokinin level is elevated in the lungs of both genetically and diet-induced obese mice. Importantly, intranasal administration of cholecystokinin A receptor antagonists (proglumide and devazepide) suppresses the airway hyperresponsiveness in the obese mice. Together, our results reveal an unexpected role for cholecystokinin in the lung and support the repurposing of cholecystokinin A receptor antagonists as a potential therapy for asthma patients with obesity.


Subject(s)
Asthma , Respiratory Hypersensitivity , Animals , Mice , Asthma/drug therapy , Asthma/metabolism , Cholecystokinin/metabolism , Lung/metabolism , Mice, Obese , Obesity/complications , Obesity/metabolism , Receptor, Cholecystokinin A/genetics , Receptor, Cholecystokinin A/metabolism , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/metabolism
13.
Thorax ; 78(5): 432-441, 2023 05.
Article in English | MEDLINE | ID: mdl-35501119

ABSTRACT

INTRODUCTION: Older adults have the greatest burden of asthma and poorest outcomes. The pharmacogenetics of inhaled corticosteroid (ICS) treatment response is not well studied in older adults. METHODS: A genome-wide association study of ICS response was performed in asthmatics of European ancestry in Genetic Epidemiology Research on Adult Health and Aging (GERA) by fitting Cox proportional hazards regression models, followed by validation in the Mass General Brigham (MGB) Biobank and Rotterdam Study. ICS response was measured using two definitions in asthmatics on ICS treatment: (1) absence of oral corticosteroid (OCS) bursts using prescription records and (2) absence of asthma-related exacerbations using diagnosis codes. A fixed-effect meta-analysis was performed for each outcome. The validated single-nucleotide polymorphisms (SNPs) were functionally annotated to standard databases. RESULTS: In 5710 subjects in GERA, 676 subjects in MGB Biobank, and 465 subjects in the Rotterdam Study, four novel SNPs on chromosome six near PTCHD4 validated across all cohorts and met genome-wide significance on meta-analysis for the OCS burst outcome. In 4541 subjects in GERA and 505 subjects in MGB Biobank, 152 SNPs with p<5 × 10-5 were validated across these two cohorts for the asthma-related exacerbation outcome. The validated SNPs included methylation and expression quantitative trait loci for CPED1, CRADD and DST for the OCS burst outcome and GM2A, SNW1, CACNA1C, DPH1, and RPS10 for the asthma-related exacerbation outcome. CONCLUSIONS: Multiple novel SNPs associated with ICS response were identified in older adult asthmatics. Several SNPs annotated to genes previously associated with asthma and other airway or allergic diseases, including PTCHD4.


Subject(s)
Anti-Asthmatic Agents , Asthma , Humans , Aged , Genome-Wide Association Study , Administration, Inhalation , Asthma/drug therapy , Asthma/genetics , Asthma/epidemiology , Adrenal Cortex Hormones/therapeutic use
14.
Noncoding RNA ; 8(2)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35447890

ABSTRACT

MicroRNAs have been independently associated with asthma and COPD; however, it is unclear if microRNA associations will overlap when evaluating retrospective acute exacerbations. Objective: We hypothesized that peripheral blood microRNAs would be associated with retrospective acute asthma exacerbations in a pediatric asthma cohort and that such associations may also be relevant to acute COPD exacerbations. Methods: We conducted small-RNA sequencing on 374 whole-blood samples from children with asthma ages 6-14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS) and 450 current and former adult smokers with and without COPD who participated in the COPDGene study. Measurements and Main Results: After QC, we had 351 samples and 649 microRNAs for Differential Expression (DE) analysis between the frequent (n = 183) and no or infrequent exacerbation (n = 168) groups in GACRS. Fifteen upregulated miRs had odds ratios (OR) between 1.22 and 1.59 for a doubling of miR counts, while five downregulated miRs had ORs between 0.57 and 0.8. These were assessed for generalization in COPDGene, where three of the upregulated miRs (miR-532-3p, miR-296-5p, and miR-766-3p) and two of the downregulated miRs (miR-7-5p and miR-451b) replicated. Pathway enrichment analysis showed MAPK and PI3K-Akt signaling pathways were strongly enriched for target genes of DE miRNAs and miRNAs generalizing to COPD exacerbations, as well as infection response pathways to various pathogens. Conclusion: miRs (451b; 7-5p; 532-3p; 296-5p and 766-3p) associated with both childhood asthma and adult COPD exacerbations may play a vital role in airflow obstruction and exacerbations and point to shared genomic regulatory machinery underlying exacerbations in both diseases.

15.
Thorax ; 77(5): 452-460, 2022 05.
Article in English | MEDLINE | ID: mdl-34580195

ABSTRACT

INTRODUCTION: Asthma is a complex disease with heterogeneous expression/severity. There is growing interest in defining asthma endotypes consistently associated with different responses to therapy, focusing on type 2 inflammation (Th2) as a key pathological mechanism. Current asthma endotypes are defined primarily by clinical/laboratory criteria. Each endotype is likely characterised by distinct molecular mechanisms that identify optimal therapies. METHODS: We applied unsupervised (without a priori clinical criteria) principal component analysis on sputum airway cells RNA-sequencing transcriptomic data from 19 asthmatics from the Severe Asthma Research Program at baseline and 6-8 weeks follow-up after a 40 mg dose of intramuscular corticosteroids. We investigated principal components PC1, PC3 for association with 55 clinical variables. RESULTS: PC3 was associated with baseline Th2 clinical features including blood (rank-sum p=0.0082) and airway (rank-sum p=0.0024) eosinophilia, FEV1 change (Kendall tau-b R=-0.333 (-0.592 to -0.012)) and follow-up FEV1 albuterol response (Kendall tau-b R=0.392 (0.079 to 0.634)). PC1 with blood basophlia (rank-sum p=0.0191). The top 5% genes contributing to PC1, PC3 were enriched for distinct immune system/inflammation ontologies suggesting distinct subject-specific clusters of transcriptomic response to corticosteroids. PC3 association with FEV1 change was reproduced in silico in a comparable independent 14-subject (baseline, 8 weeks after daily inhaled corticosteroids (ICS)) airway epithelial cells microRNAome dataset. CONCLUSIONS: Transcriptomic PCs from this unsupervised methodology define molecular pharmacogenomic endotypes that may yield novel biology underlying different subject-specific responses to corticosteroid therapy in asthma, and optimal personalised asthma care. Top contributing genes to these PCs may suggest new therapeutic targets.


Subject(s)
Asthma , Eosinophils , Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Asthma/genetics , Basophils/pathology , Eosinophils/pathology , Humans , Inflammation , Lung , Sputum , Steroids/therapeutic use
16.
Clin Exp Allergy ; 52(1): 33-45, 2022 01.
Article in English | MEDLINE | ID: mdl-33428814

ABSTRACT

BACKGROUND: Inhaled corticosteroids (ICS) are a cornerstone of asthma treatment. However, their efficacy is characterized by wide variability in individual responses. OBJECTIVE: We investigated the association between genetic variants and risk of exacerbations in adults with asthma and how this association is affected by ICS treatment. METHODS: We investigated the pharmacogenetic effect of 10 single nucleotide polymorphisms (SNPs) selected from the literature, including SNPs previously associated with response to ICS (assessed by change in lung function or exacerbations) and novel asthma risk alleles involved in inflammatory pathways, within all adults with asthma from the Dutch population-based Rotterdam study with replication in the American GERA cohort. The interaction effects of the SNPs with ICS on the incidence of asthma exacerbations were assessed using hurdle models adjusting for age, sex, BMI, smoking and treatment step according to the GINA guidelines. Haplotype analyses were also conducted for the SNPs located on the same chromosome. RESULTS: rs242941 (CRHR1) homozygotes for the minor allele (A) showed a significant, replicated increased risk for frequent exacerbations (RR = 6.11, P < 0.005). In contrast, rs1134481 T allele within TBXT (chromosome 6, member of a family associated with embryonic lung development) showed better response with ICS. rs37973 G allele (GLCCI1) showed a significantly poorer response on ICS within the discovery cohort, which was also significant but in the opposite direction in the replication cohort. CONCLUSION: rs242941 in CRHR1 was associated with poor ICS response. Conversely, TBXT variants were associated with improved ICS response. These associations may reveal specific endotypes, potentially allowing prediction of exacerbation risk and ICS response.


Subject(s)
Anti-Asthmatic Agents , Asthma , Administration, Inhalation , Adrenal Cortex Hormones/adverse effects , Adult , Anti-Asthmatic Agents/therapeutic use , Asthma/diagnosis , Asthma/drug therapy , Asthma/genetics , Humans , Pharmacogenetics
17.
J Pers Med ; 11(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34442380

ABSTRACT

Inhaled corticosteroids (ICS) are the most common asthma controller medication. An important contribution of genetic factors in ICS response has been evidenced. Here, we aimed to identify novel genetic markers involved in ICS response in asthma. A genome-wide association study (GWAS) of the change in lung function after 6 weeks of ICS treatment was performed in 166 asthma patients from the SLOVENIA study. Patients with an improvement in lung function ≥8% were considered as ICS responders. Suggestively associated variants (p-value ≤ 5 × 10-6) were evaluated in an independent study (n = 175). Validation of the association with asthma exacerbations despite ICS use was attempted in European (n = 2681) and admixed (n = 1347) populations. Variants previously associated with ICS response were also assessed for replication. As a result, the SNP rs1166980 from the ROBO2 gene was suggestively associated with the change in lung function (OR for G allele: 7.01, 95% CI: 3.29-14.93, p = 4.61 × 10-7), although this was not validated in CAMP. ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in Europeans (minimum p-value = 1.44 × 10-5), but not in admixed individuals. The association of PDE10A-T with ICS response described by a previous study was validated. This study suggests that ROBO2 could be a potential novel locus for ICS response in Europeans.

18.
Allergy Asthma Immunol Res ; 13(4): 576-588, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34212545

ABSTRACT

OBJECTIVE: MicroRNAs (miRs) are small non-coding RNA molecules of around 18-22 nucleotides that are key regulators of many biologic processes, particularly inflammation. The purpose of this study was to determine the association of circulating miRs from asthmatic children with seasonal variation in allergic inflammation and asthma symptoms. METHODS: We used available small RNA sequencing on blood serum from 398 children with mild-to-moderate asthma from the Childhood Asthma Management Program. We used seasonal asthma symptom data at the study baseline and allergen affection status from baseline skin prick tests as primary outcomes. We identified differentially expressed (DE) miRs between pairs of seasons using DESeq2. Regression analysis was used to identify associations between allergy status to specific seasonal allergens and DE miRs in 4 seasons and between seasonal asthma symptom data and DE miRs. We performed pathway enrichment analysis for target genes of the DE miRs using DAVID. RESULTS: After quality control, 398 samples underwent differential analysis between the 4 seasons. We found 52 unique miRs from a total of 81 DE miRs across seasons. Further investigation of the association between these miRs and sensitization to seasonal allergens using skin prick tests revealed that 26 unique miRs from a total of 38 miRs were significantly associated with a same-season allergen. Comparison between seasonal asthma symptom data revealed that 2 of these 26 miRs also had significant associations with asthma symptoms in the same seasons: miR-328-3p (P < 0.03) and let-7d-3p (P < 0.05). Enrichment analysis showed that the most enriched pathway clusters were Rap1, Ras, and MAPK signaling pathways. CONCLUSION: Our results show seasonal variation in miR-328-3p and let-7d-3p are significantly associated with seasonal asthma symptoms and seasonal allergies. These indicate a potentially protective role for let-7d-3p and a deleterious role for miR-328-3p in asthmatics sensitized to mulberry. Further work will determine whether these miRs are drivers or results of the allergic response.

19.
J Pers Med ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923455

ABSTRACT

Of children with recurrent wheezing in early childhood, approximately half go on to develop asthma. MicroRNAs have been described as excellent non-invasive biomarkers due to their prognostic utility. We hypothesized that circulating microRNAs can predict incident asthma and that that prediction might be modified by vitamin D. We selected 75 participants with recurrent wheezing at 3 years old from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). Plasma samples were collected at age 3 and sequenced for small RNA-Seq. The read counts were normalized and filtered by depth and coverage. Logistic regression was employed to associate miRNAs at age 3 with asthma status at age 5. While the overall effect of miRNA on asthma occurrence was weak, we identified 38 miRNAs with a significant interaction effect with vitamin D and 32 miRNAs with a significant main effect in the high vitamin D treatment group in VDAART. We validated the VDAART results in Project Viva for both the main effect and interaction effect. Meta-analysis was performed on both cohorts to obtain the combined effect and a logistic regression model was used to predict incident asthma at age 7 in Project Viva. Of the 23 overlapped miRNAs in the stratified and interaction analysis above, 9 miRNAs were replicated in Project Viva with strong effect size and remained in the meta-analysis of the two populations. The target genes of the 9 miRNAs were enriched for asthma-related Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. Using logistic regression, microRNA hsa-miR-574-5p had a good prognostic ability for incident asthma prognosis with an area under the receiver operating characteristic (AUROC) of 0.83. In conclusion, miRNAs appear to be good biomarkers of incident asthma, but only when vitamin D level is considered.

20.
J Pers Med ; 11(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802355

ABSTRACT

Corticosteroid resistance causes significant morbidity in asthma, and drug repurposing may identify timely and cost-effective adjunctive treatments for corticosteroid resistance. In 95 subjects from the Childhood Asthma Management Program (CAMP) and 19 subjects from the Severe Asthma Research Program (SARP), corticosteroid response was measured by the change in percent predicted forced expiratory volume in one second (FEV1). In each cohort, differential gene expression analysis was performed comparing poor (resistant) responders, defined as those with zero to negative change in FEV1, to good responders, followed by Connectivity Map (CMap) analysis to identify inversely associated (i.e., negatively connected) drugs that reversed the gene expression profile of poor responders to resemble that of good responders. Mean connectivity scores weighted by sample size were calculated. The top five drug compound candidates underwent in vitro validation in NF-κB-based luciferase reporter A549 cells stimulated by IL-1ß ± dexamethasone. In CAMP and SARP, 134 and 178 respective genes were differentially expressed in poor responders. CMap analysis identified 46 compounds in common across both cohorts with connectivity scores < -50. γ-linolenic acid, ampicillin, exemestane, brinzolamide, and INCA-6 were selected for functional validation. γ-linolenic acid, brinzolamide, and INCA-6 significantly reduced IL-1ß induced luciferase activity and potentiated the anti-inflammatory effect of dexamethasone in A549/NF-κB-luc reporter cells. These results demonstrate how existing drugs, including γ-linolenic acid, brinzolamide, and INCA-6, may be repurposed to improve corticosteroid response in asthmatics.

SELECTION OF CITATIONS
SEARCH DETAIL
...